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COMPUTATIONAL METHODS FOR THE FRACTIONAL

OPTIMAL CONTROL HIV INFECTION

L. F. ABD ELAL, N. H. SWEILAM, A. M. NAGY, Y. S. ALMAGHREBI

Abstract. In this paper two numerical methods are used to study the non-

linear fractional optimal control problem (FOCP) for the human immunodefi-

ciency virus (HIV) model. The objective functional is based on a combination
of maximizing benefit relied on uninfected cells count and minimizing the sys-

temic cost of chemotherapy. The state equations are given as a system of
fractional order differential equations (FODEs). The fractional derivatives are

described in the Caputo sense. The Pontriagyn maximum principle (PMP) is

used to obtain a necessary optimality condition for the FOCP. The optimal-
ity system is derived and we introduce an iterative optimal control method

(IOCM) to solved it numerically, comparisons between IOCM and the gen-

eralized Euler method (GEM) are given. Numerical experiment is presented
to demonstrate the validity and applicability of the proposed technique. we

can conclude that IOCM is preferable because the uninfected cells are increas-

ing using the proposed method than GEM, moreover the infected cells are
decreasing in better way than GEM.

1. Introduction

It is well known that the human immunodeficiency virus (HIV) is a retrovirus
that infects cells of the immune system, destroying or impairing their function.
As the infection progresses, the immune system becomes weaker, and the person
becomes more susceptible to infections. The most advanced stage of HIV infection
is acquired immunodeficiency syndrome (AIDS) [22]. HIV infection can generally
be broken down into four distinct stages: primary infection, clinically asymptomatic
stage, symptomatic HIV infection, and progression from HIV to AIDS.

This paper attempts the numerical solution for fractional order model of HIV
infection of CD4+T cells. The reason of using FODEs are that, naturally related
to systems with memory because the definition of fractional derivative involves an
integration which is non local operator (as it is defined on an interval) so fractional
derivative is a non local operator. Also FODEs are closely related to fractals which
are abundant in biological systems.
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Fractional calculus has been successfully applied to system biology, physics,
chemistry and biochemistry, hydrology, medicine, and finance see ([6],[8],[11],[18]).
It is also shown that the materials with memory, hereditary effects and dynamical
processes including gas diffusion and heat conduction in fractal porous media can
be modeled by fractional order models better than integer models [21].

Fractional optimal control problems (FOCPs) are a set of FODEs describing
the paths of the control variables that maximize a function of the state and con-
trol variables. There are several different ways of defining fractional derivatives,
and, consequently, different types of FOCPs. However, the ones in the sense the
Riemann-Liouville and the Caputo have been more widely used. In ([3],[4]), the
FOCPs are formulated using the definition of fractional derivatives in the sense of
Caputo. There are a lot of the numerical methods to solve a FOCPs such as ([2],
[5], [20]).

Model Problem: There are several mathematical models have been proposed
to describe the in vivo dynamics of T cell and HIV interaction, these models us-
ing ordinary differential equations (ODEs) have been developed to investigate the
dynamics of HIV infection, see ([9],[12],[15],[16]). We consider the HIV infection
model of CD4+T cells [7]. Let T (t) and I(t) be the concentration (population
number per unit volume) of uninfected and infected CD4+T cells, respectively. Let
V (t) be the concentration of free virus particles. We interested in the retention
and/or increase of the CD4+T cell count. This model is characterized by a system
of the nonlinear ordinary differential equations.

Let us consider the following optimal control problem:

maximize J(t, u, T ) =

∫ L

0

[
T (t)− B

2
(1− u(t))2

]
dt, (1)

subject to the constraints:

dT

dt
=

s

1 + V (t)
−m1T (t) + rT (t)

(
1− T (t) + I(t)

Tmax

)
− u(t)kV (t)T (t);

dI

dt
= u(t)kV (t)T (t)−m2I(t); (2)

dV

dt
= Nm2I(t)−m3V (t);

T (0) = T0, I(0) = I0, V (0) = V0, 0 ≤ u(t) ≤ 1; (3)

where L is a final time and B > 0 is a cost parameter. The variables and parameters
are described below in Table 1, for more details see [7]. We introduce fractional-
order into the model (2) of HIV infection of the CD4+T cells. The new system is
described by the following set of FODEs of order α > 0 :

C
0 D

α
t T (t) =

s

1 + V (t)
−m1T (t) + rT (t)

(
1− T (t) + I(t)

Tmax

)
− u(t)kV (t)T (t),

C
0 D

α
t I(t) = u(t)kV (t)T (t)−m2I(t), (4)

C
0 D

α
t V (t) = Nm2I(t)−m3V (t),

where C
0 D

α
t is the Caputo fractional derivative.

The remainder of this paper is organized as follows : In Section 2, mathematical
preliminaries of the fractional calculus theory which are required for establishing
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Table 1. Variables and parameters of the proposed model with
their values.

Notation Dependent variables Values
T Uninfected CD4+T cell population 800 mm3

I Infected CD4+T cell population 0.04 mm3

V Infectious HIV population 1.5 mm3

Parameter and Constants
s Source term for uninfected CD4+T 10 mm3d−1

m1 Death rate of uninfected CD4+T cell population 0.02 d−1

m2 Death rate of infected CD4+T cell population 0.5 d−1

m3 Death rate of free virus 4.4d−1

k Rate CD4+T cells become infected by free virus 0.000024 mm3d−1

r Rate of growth for the CD4+T cell population 0.03 d−1

N Number of free virus produced by I cells 300
Tmax Maximum CD4+T cell population level 1500 mm3

the results are given. In Sections 3, the necessary optimality conditions for the
fractional order HIV model are derived. In Section 4, IOCM is introduced for
solving the propose model. Finally, in Section 5, numerical simulations are given
to show the efficiency of proposed method.

2. Definitions and Preliminaries

Definition 2.1. [17] The left Caputo fractional derivative (LCFD) is defined as
follows:

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− τ)n−α−1
dn

dτn
x(τ)dτ,

the right Caputo fractional derivative (RCFD) is defined as follows:

C
t D

α
b f(t) =

(−1)n

Γ(n− α)

∫ b

t

(τ − t)n−α−1 d
n

dτn
x(τ)dτ.

Where Γ is the Euler gamma function.

Definition 2.2. [17] The Grünwald-Letnikov’s fractional derivative (GLFD) is de-
fined as:

Dαf(t) = lim
h→0

1

hα

[ t
h ]∑
i=0

w
(α)
i f(t− ih),

where [a] denotes the integer part of a and

w
(α)
i = (−1)i

(
α

i

)
=

Γ(α+ 1)

i!Γ(α− i+ 1)
,

with
(
α
i

)
being the fractional binomial coefficients. It is clear that the coefficients

w
(α)
i can be evaluated recursively as follows:

w
(α)
0 = 1, w

(α)
i =

(
1− α+ 1

1

)
w

(α)
i−1, i ≥ 1.
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2.1. Generalized Euler Method.

GEM is a generalization of the classical Euler’s method. The headlines of this
method is given as follows, let us consider the following initial value problem

Dα
∗ y(t) = f(y(t), t), y(0) = y0, 0 < α ≤ 1, t > 0, (5)

where Dα
∗ is the Caputo fractional derivative. Let [0, a] be the interval over which

we want to find the solution of the problem (5). The interval [0, a] will be subdivided
into k subintervals [tj , tj+1] of equal width h = a/k by using the nodes tj = jh, for
j = 0, 1, ..., k.

The general formula for GEM when tj+1 = tj + h is

y(tj+1) = y(tj) +
hα

Γ(α+ 1)
f(tj , y(tj)), (6)

for j = 0, 1, ..., k − 1. It is clear that if α = 1, then the GEM (6) reduces to the
classical Euler’s method, for more details see [13]

2.2. Fractional Optimal Control Problem Formulation.

The main point in FOCPs is to find the optimal control u(t) which maximizes the
following objective function [1]

J(u) =

∫ 1

0

f(x, u, t) dt, (7)

subject to the constraint,

C
aD

α
t x = g(x, u, t), (8)

and satisfying the initial conditions

x(0) = x0.

Here t denotes the time, x(t) and u(t) are a n× 1 state and m× 1 control vectors
(not necessarily in same dimension) respectively, f and g are a scalar and a n× 1
vector functions, a C

aD
α
t x is LCFD of order α of x, with respect to t. The following

expression defines a modified objective function

J̃ =

∫ 1

0

[
H(x, u, t)− λtr CaDα

t x
]
dt, (9)

where H(x, u, t) is the following Hamiltonian

H(x, u, λ, t) = f(x, u, t) + λtr g(x, u, t), (10)

and λtr is the transpose of a nx × 1 vector of Lagrange multipliers. Here the
superscript tr represents the transpose of the vector. From (9) and (10), we can
derive [1]:

C
t D

α
1 λ =

∂H

∂x
,

0 =
∂H

∂u
, (11)

C
0 D

α
t x =

∂H

∂λ
,
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and it is also required that

λ(b) = 0. (12)

Eqs.(11) and (12) describe the necessary conditions in terms of a Hamiltonian for
the FOCP defined above. These conditions result a set of fractional differential
equations (FDEs), in terms of the variables state x, control u, and Lagrange mul-
tiplier λ , to be solved analytical or numerically or even both.

3. Optimality Condition for the Fractional-Order HIV Model

To obtain the necessary optimality conditions for FOCPs, we define the Hamil-
tonian function as:

H(T, I, V, u, λ1, λ2, λ3) = T − B

2
(1− u)2 + λ1

[
s

1 + V
−m1T + rT

(
1− T + I

Tmax

)
− ukV T

]
+ λ2 (ukV T −m2I) + λ3 (Nm2I(t)−m3V (t)) ,

where λi(t), i = 1, 2, 3 are the Lagrange multipliers, also known as a co-state or
adjoint variables.

Theorem 3.1. [10] Given an optimal control u and solutions of the corresponding
state system (4), there exist costate variables λi, i = 1, 2, 3 satisfying

(i) co-state equations:

λ̇1 = −∂H
∂T

= −1 + λ1

(
m1 − r +

2rT + rI

Tmax

)
− (λ2 − λ1)kuV,

λ̇2 = −∂H
∂I

=
λ1rT

Tmax
+ λ2m2 − λ3Nm2, (13)

λ̇3 = −∂H
∂V

=
sλ1

(1 + V )2
− (λ2 − λ1)(kuT ) + λ3m3,

(ii) optimality conditions:
H(T, I, V, λ1, λ2, λ3, u) = max

0≤u≤1
H(T, I, V, λ1, λ2, λ3, u

∗), which implies that

u = min

{(
(λ2 − λ1)kV T +B

B

)+

, 1

}
, (14)

where the stationarity condition is ∂H
∂u = 0 and(

(λ2 − λ1)kV T +B

B

)+

=

{
(λ2−λ1)kV T+B

B , if (λ2−λ1)kV T+B
B ≥ 0

0, if (λ2−λ1)kV T+B
B < 0

;

(iii) transversality conditions :

λi(tf ) = 0, i = 1, 2, 3. (15)

4. A Numerical Scheme for the Fractional-Order HIV Model

The aim of this section is to solve FODEs (4) it must first be discretized. In this
part we use Grünwald-Letnikov’s method (definition 2.2) to discretization the frac-
tional derivative C

aD
α
t f(t). So by some simple calculations, system (4) is discretized
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as follows:

Tj =

s
1+Vj

−
j∑
i=1

wαi Tj−i

wα0 +m1 − r
(

1− Tj+Ij
Tmax

)
+ kujVj

Ij =

kujVjTj −
j∑
i=1

wαi Ij−i

wα0 +m2
(16)

Vj =

Nm2Ij −
j∑
i=1

wαi Vj−i

wα0 +m3

4.1. IOCM Algorithm.

In the following we presented IOCM algorithm to solving the optimization problem
(1) :

Step 0: Choose a starting point (T0, I0, V0); set j = 0.
Step 1: Compute u(j) according to the formula

u(j) = min

{(
(λ2(j)− λ1(j))kV (j)T (j) +B

B

)+

, 1

}
,

where (a)
+

is defined as

(a)
+

=

{
a, if a > 0
0, if a ≤ 0 ;

by solving the co-state system (13) with transversality conditions λi(tf ) =
0, i = 1, 2, 3.

Step 2: Plugging the value of u(j) into the system (16) and solve it with the same
starting point to obtain the new starting point (Tj , Ij , Vj).

Step 3: The stopping criterion is as follows:
if | u(j)− u(j + 1) |< ε then stop
else j = j + 1; go to Step 1. Where ε is a small positive integer.

5. Numerical Experiment

The following, IOCM is used to obtain the approximate solutions for systems
(4) and (13) as explained in the fourth section. Using the initial condition and
parameters in Table 1.

From the obtained results in the presented tables and figures, it is clear that the
primary stage of the infection with the HIV virus, a dramatically decrease in the
level of the CD4+T cells occurs because of the death of such infected cells. On the
other hand, the number of uninfected cells increase. The number of the free HIV
virus particles are decrease with time as shown in figures above. This assumes that
the growth of healthy cells slows down during the course of HIV infection. The
concentration of uninfected CD4+T cells T , infected CD4+T cells I and free virus
particles V in the blood have been obtained, therefor when, α = 1 the solution of
the fractional model (4), reduce to standard solution.
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6. Conclusions

In this paper the fractional optimal control problems for HIV infection is pre-
sented and a set of necessary optimality conditions are derived. The methods
GEM and IOCM are applied to solve the model problem numerically. Numerical
experiment is given to demonstrate the validity and applicability of the presented
technique. It is found that IOCM is preferable because the uninfected cells are
increasing using the proposed method than GEM, moreover the infected cells are
decreasing in better way than GEM.
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Table 2. Comparisons between GEM and IOCM after 20 days
from infection, where (T0, I0, V0)=(800, 0.04, 1.5)and α = 1.

GEM IOCM - Algorithm

t(days) T I V u T I V u
0 800.00 0.0400 1.5000 0.0010 800.00 0.0400 1.5000 0.0000
5 809.53 0.0029 0.1105 0.0010 884.96 0.0002 0.0080 0.6955
10 831.37 0.0002 0.0081 0.8050 941.04 0.0004 0.0123 0.6830
15 852.45 0.00006 0.0006 0.9927 967.84 0.0009 0.0292 0.7088
20 871.27 0.00002 0.0001 0.9990 965.75 0.0094 0.3169 1.0000

Table 3. Comparisons between GEM and IOCM after 20 days
from infection, where (T0, I0, V0)=(800, 0.04, 1.5)and α = 0.98.

GEM IOCM - Algorithm

t(days) T I V u T I V u
0 800.00 0.0400 1.5000 0.0010 800.00 0.0400 1.5000 0.0000
5 810.36 0.0026 0.0985 0.0010 842.05 0.0003 0.0087 0.6840
10 833.20 0.0002 0.0065 0.8433 906.02 0.0003 0.0118 0.7060
15 854.93 0.00001 0.0005 0.9945 942.20 0.0008 0.0279 0.7256
20 874.18 0.000001 0.00003 0.9990 947.13 0.0113 0.3759 1.0000

Table 4. Comparisons between GEM and IOCM after 20 days
from infection, where (T0, I0, V0)=(800, 0.04, 1.5)and α = 0.95.

GEM IOCM - Algorithm

t(days) T I V u T I V u
0 800.00 0.0400 1.5000 0.0010 800.00 0.0400 1.5000 0.0000
5 811.69 0.0021 0.0821 0.0010 778.24 0.0003 0.0096 0.6722
10 836.05 0.0001 0.0046 0.8889 849.64 0.0003 0.0110 0.7409
15 858.73 0.00007 0.0003 0.9963 897.43 0.0007 0.0250 0.7629
20 878.62 0.00004 0.00001 0.9990 916.43 0.0083 0.2758 1.0000
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Figure 1. The concentration of uninfected CD4+T cells T (t),
infected CD4+T cells I(t), free infectious virus particles V (t) in
the blood and the optimal control u with 0 ≤ u ≤ 1. Here we
initiate treatment after 20 days from infection, α = 1.
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Figure 2. The concentration of uninfected CD4+T cells T (t),
infected CD4+T cells I(t), free infectious virus particles V (t) in
the blood and the optimal control u with 0 ≤ u ≤ 1. Here we
initiate treatment after 20 days from infection, α = 98.
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Figure 3. The concentration of uninfected CD4+T cells T (t),
infected CD4+T cells I(t), free infectious virus particles V (t) in
the blood and the optimal control u with 0 ≤ u ≤ 1. Here we
initiate treatment after 20 days from infection, α = 95.
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